
JOURNAL OF CATALYSIS 61, 270-276 (1980) 

Conditions for a Rate-Maximizing Temperature in Heterogeneous 
Catalysis’ 

Conditions are derived for Langmuir-Hinshelwood and Eley-Rideal heterogeneous catalytic 
reactions to have a reaction rate maximum as a function of temperature. Experimental results 
contradict previously derived conditions which assumed that the surface diffusion was governed by 
a single transition rate. More than one transition rate will enter the analysis of surface diffusion if 
the surface is heterogeneous or, as observed in field ion microscope experiments, the reactant 
passes through several nonequivalent configurations while migrating. An analysis of the rate of 
reaction when more than one transition rate is involved leads to a condition which could facilitate 
the interpretation of rate maximum reaction mechanisms. 

A number of heterogeneous catalytic 
reactions exhibit a reversible maximum rate 
of reaction as a function of temperature 
(Z-4). For example, Moffat and Clark (4) 
found a rate-temperature maximum in their 
study of the disproportionation of olefins 
(propylene) on cobalt-molybdate-alumina 
(Co-Mo-A&O,) catalyst. At temperatures 
below T,,, they found the reaction rate, r, 
to obey a Langmuir-Hinshelwood equation 
for bimolecular reactions 

r = k[Kpl(l + Kp)lz, (1) 

where k is the transition rate of diffusion 
and reaction of the reactants on the surface, 
K is the ratio of adsorption to desorption 
rates, and p is the pressure of the gaseous 
species. The factor in square brackets in the 
above equation is the equilibrium fractional 
surface coverage. 

Usually, Arrhenius activated forms are 
assumed for both k and K (66), i.e., 

k = A exp(-E/RT) 

and 

K = exp(AS/R) exp(-AHIRT), (2) 

where E is the activation energy for diffu- 
sion, AS is the differential entropy of ad- 
sorption, AH is the heat of adsorption, and 
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A is a preexponential (frequency) factor. 
Substituting Eq. (2) into the equation for r 
and setting the derivative of the resulting 
expression with respect to temperature 
equal to zero yields the condition for a 
rate-temperature maximum. When the ad- 
sorption step of the reaction is exothermic 
AH is always negative, and the rate maxi- 
mum condition is (4-6) 

where /3 = p exp(AS/R) which is usually 
much smaller than unity. Note, that from 
Eq. (l), a plot of l/r*/* versus I/p would 
yield values for k and K from which the 
activation energy E is obtained as 

The heat of adsorption, AH, is obtained 
from the adsorption equilibrium constant K 
via 

(5) 

Moffat and Clark (4) found the values E = 
8.2 kcal/mole and [AH] = 2.8 kc’al/mole in 
a system which exhibited a rate- 
temperature maximum. However, these 
values violate the condition for a rate max- 
imum as given in Eq. (3). To reconcile this 
problem Aldag and Clark (5) invoked het- 
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erogeneity of the surface toward adsorption 
and desorption. A critique of their interpre- 
tation is presented in Appendix A. 

We proceed to propose mechanisms 
where the Langmuir-Hinshelwood form of 
Eq. (1) is preserved, but the rate- 
temperature maximum condition (Eq. (3)) is 
modified, leading to conclusions consistent 
with the experimental data. Common to the 
mechanism which we propose is the prop- 
erty that the reactant transport (diffusion) 
on the surface is characterized by more 
than one rate constant. Two possible mech- 
anisms are considered: (i) multistate diffu- 
sion, and (ii) diffusion on a heterogeneous 
substrate. 

(i) Mu/t&ate di$usion. When the propa- 
gation of the diffusing species involves 
transitions between more than one state the 
mechanism is termed multistate diffusion. 
Such a mechanism occurs when the reac- 
tants perform transitions between several 
spatial configurations in the course of prop- 
agation. A number of systems exhibiting 
such a behavior have been observed using 
field ion microscopy (FIM) (7). For exam- 
ple, the motion of tungsten dimers on a 
W(211) surface (8, 9) involves transitions 
between alternating staggered and straight 
configurations which are characterized by 
different rate constants. It is plausible that 
the motion on a surface of a species as 
complex as an olefin would involve a num- 
ber of transitions between distinct config- 
urations of the molecule. Out of these tran- 
sitions those with the highest activation 
energies would be the rate-limiting steps of 
the migration. Another multistate mecha- 
nism occurs when the adsorbed reactants 
may exist in two (or more) states which are 
distinguished as mobile and immobile states 
(Lennard-Jones mechanism (10)). When in 
the immobile state the particle merely vib- 
rates in the potential well which binds it to 
the site and also performs transitions to a 
higher energy state through which it may 
propagate. (At normal temperatures propa- 
gation through the mobile state is the domi- 
nant mode of activated intersite transitions. 

At low temperatures one may include in ad- 
dition spatial transitions through the 
lower-energy states which correspond to 
nonactivated, tunneling transport). 

For systems in which the motion of the 
diffusing particles involves more than a 
single transition rate, the diffusion constant 
and hence the rate k (see Eq. (1)) is mod- 
ified from the customary single- 
exponential, Arrhenius activated form (see 
Eq. (2)). For example, for the motion of a 
species which is characterized by two dis- 
tinct states (configurational or energetic in 
origin) participating in the migration mech- 
anism (with corresponding transition rates 
A and B), a random-walk model allowing 
for the presence of internal states yields 
(8, 9, 11-13) (see also Appendix B) fork the 
expression 

k=& 

where the rates A and B may both be writ- 
ten in activated Arrhenius forms. We 
choose 

A = v, exp(-E,/RT) 

B = vB exp(-E,/RT) (7) 

where vA, vg are frequency factors and EA, 
EB are the activation energies for the two 
states, respectively. If a straight line results 
from an experimental plot of log k versus 
(RT)-‘, this does not necessarily imply that 
k = v exp(-E/RT) and that k cannot be of 
the form given in Eqs. (6) and (7). In prac- 
tice, a plot of log k given by Eqs. (6) and (7) 
versus (RT)-’ for typical experimental 
temperature ranges will yield a straight line 
of slope -EA if 

(i) EA z EB; 

or (ii) E, a EB + RT In VA. 
VB (8) 

Such cases have been encountered in the 
analysis of multistate cluster motion on sur- 
faces observed via FIM (9), where more 
than one rate-limiting step is involved in the 
transport, but still the semilogarithmic plot 
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of mean squared ditision distance versus 
inverse temperature yields an apparent 
straight line. It is only recently (II, 12) that 
an analysis has been given to find all the in- 
dividual activation energies and frequency 
factors which comprise the diffusion con- 
stant, from field ion microscope data. 

Using the transition rate as given in Eqs. 
(6) and (7) the following condition is found 
for a rate maximum of r to occur, 

1 + p exp[AS/R - IAHI/RT,] 
21AHI 

A+B 
= E,A + E,B ’ (9) 

where T,,, is the maximizing temperature. 
Let us denote the RHS by I. A linear analy- 
sis shows that if p is decreased by an 
amount 6p then T, will-be decreased by an 
amount 6T,, where 

STm = Sp exp[AS/R 

+ ~~H~/KJWn*I~~H~ 
x (2lAHlI - 1 + 2AB 
[IV, - &)/(A + B)l*)-‘. (10) 

This is in accord with the experimental re- 
sult that a decrease in pressure lowers the 
maximizing temperature (4). Neglecting p 
exp(AS/R) compared to unity (4) we find 
for the existence of a rate maximum the in- 
equality 

v~(21AHt - EB) > VB(& - 21AHIL (11) 

where we have assumed, without loss of 
generality, that EA > Eg. In contrast to Eq. 
(3) this inequality could be satisfied by the 
measurements of Moffat and Clark (4) who 
found E, = 8.2 kcal/mole, JAHI = 2.8 
kcal/mole, if 0 < EB < 5.6-2.6 (dud 
kcal/mole. In order for the diffusion to ap- 
parently be well described by a single trans- 
ition rate, the second inequality in Eq. (8) 
must also be obeyed. 

(ii) Diffusion on a heterogeneous sub- 
strate. Another possible mechanism for in- 
troducing more than one transition rate in 
the description of reactant diffusion is if the 
surface is heterogeneous. Consider a sur- 

face consisting of NA and Na sites, charac- 
terized by release rates A and B, respec- 
tively, of the diffusing species (withA and B 
given as in Eq. (7)). For a random place- 
ment of the two types of sites, in an approx- 
imation which neglects correlations be- 
tween sites, the diffusion rate for the system 
is given by (14) 

% ,W,,-EB)/R7’- 1 

vA 
9 (12) 

where k,, = vg exp - - 
( 1 RT and C= 

N 
A 

TN . Using the above expression the 
B 

condition for a rate-temperature maximum 
is 

(1 - +A(~IAHI - EB) 

> CVB(EA - 2]AH]) (13) 

for EA > Eg. For the system studied by 
Moffat and Clark (4) the above inequality 
will be consistent with the data if 0 < Es < 

5.6 - 2.6 e)V, kcal/mole. 1 
A similar analysis of an Eley-Rideal 

mechanism, with rate r given by 

(14) 

when the diffusion rate k is governed by two 
transition rates (Eq. (6)), yields the follow- 
ing expression for the maximizing tempera- 
ture, T,,,, 

T /A -EB 
m R 

-l 
* (‘3 

In the abovep exp(AS/R) 4 1, and AH < 0 
have been used. Assuming EA > Es yields 
the following inequality 

VA(IAHI - Ed > %@A - /AHI) (16) 

for the existence of a rate-maximizing tem- 
perature. When k is governed by only one 
rate-limiting step, i.e., k = v exp(-E/RT) 
then the analogous inequality is (4) 
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E(P + 1) < /AH]. (17) 

As is the case with a Langmuir- 
Hinshelwood reaction mechanism when 
Eq. (17) is not satisfied by the experimental 
data but a rate maximum occurs neverthe- 
less, this may suggest that the surface diffu- 
sion of the reactants involves more than one 
transition rate, perhaps due to multistates 
(spatial or energetic) of the reactants, or 
surface heterogeneities. If more than two 
transition rates are involved inequalities 
more complicated than Eq. (11) can be de- 
rived. 

Our objective in this note has been to in- 
corporate possible diffusion mechanisms in 
the analysis of reactions obeying 
Langmuir-Hinshelwood or Eley-Rideal 
mechanisms which exhibit rate- 
temperature maxima. We have derived in- 
equalities which constitute conditions for 
the existence of such rate maxima for het- 
erogeneous systems and for multistate dif- 
fusion mechanisms. Subject to certain con- 
straints the above derived inequalities 
could be satisfied by the experimental data. 
It is suggested that additional controlled 
experiments such as measurements of the 
rate-maximizing temperature as a function 
of pressure or field ion microscope multi- 
state diffusion data would allow the estima- 
tion of the additional parameters [vB and &, 
see Eqs. (11) and (16)] introduced by our 
model. 

APPENDIX A 

In a recent study, Aldag and Clark (5) 
reconsidered the analysis of the experi- 
ments (4) of olefin disproportionation which 
exhibited a rate-temperature maximum for 
a Langmuir-Hinshelwood reaction. Their 
investigation was motivated by the fact that 
the values for AH and E determined from 
the pressure and temperature dependence 
of the data were inconsistent with the in- 
equality given in Eq. (3). They consider that 
the Langmuir-Hinshelwood rate for a 
nonuniform surface can be represented by 

.\ 
r = kp2 c 

Ki2 
i=, (1 + KiP12 

(Al) 

or an appropriate continuum limit. In the 
above the summation incorporates hetero- 
geneity of the surface toward adsorption- 
desorption while the diffusion represented 
by k is regarded as taking place on a uni- 
form surface. However, since the data (4) 
fit Eq. (l), i.e., the N = 1 case, they at- 
tempted to rewrite Eq. (Al) in a form with 
N = 1. They denote the sum in Eq. (Al) by 
F(p), and write what is equivalent to the 
following identities: 

~ kp’F” (F - H)” 
(F - HI” F’ 

’ (A2) 

The first bracket in Eq. (A2) is identified 
with k in Eq. (1) and pK in Eq. (1) is iden- 
tified with [F(p)/H(p)]-I. H(p) is chosen 

to be equal to i Ki’/‘(l + Kip)“. After 
i=l 

these identifications, the resemblance of 
Eq. (A2) to Eq. (1) is only symbolic. The 
essential point is that Eq. (Al) is not equi- 
valent to Eq. (1) and H(p) which enters 
Eq. (A2) is completely arbitrary, thus 
making the choice of K arbitrary, as well 
as the apparent heat of adsorption, AH, 
which is calculated from K. 

APPENDIX B 

In this appendix we outline the derivation 
of the expression for the diffusion constant 
for a system which exhibits a multistate dif- 
fusion mechanism. The derivation proceeds 
via the continuous-time-random-walk with 
internal states model which we have devel- 
oped recently. Since detailed discussions of 
the technique can be found elsewhere (IZ- 
14) we limit ourselves to a presentation of 
the main underlying ideas. 
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Consider a crystalline system where the 
propagation of the diffusing entity (single 
particle, multiparticle cluster) is charac- 
terized by transitions between internal 
states (energetic, e.g., mobile and immobile 
states, configurational). The spatial motion 
of the centroid of the diffusant can be map- 
ped onto a lattice with a number of states in 
each unit cell. Such a mapping is shown in 
Fig. 1 where the case of a diffusant with two 
configurational internal states is considered. 
Transitions in the system are governed by a 
waiting-time probability density function 
*\I((1,1’;7), for transitions (l’,j) + (I$), 
where the couple (1,i) represents position 1 
in internal state i. For the above function we 
choose the form 

V!ij(l,l’;7) z pjj(1’ - l)$j(T). (Bl) 

The factor pij (1’ - I), structural in origin, is 
the probability that the transition is from 
(1’ j) to (I$) and Jlj(r)dr is the probability 
that a transition out of statej occurs in the 
time interval (7,~ + do). The function J/j(r) 
reflects the underlying potential surface, 
and in the following we would take it to be 
of the form 

JIj(T) = hje-“j’, (B’W 

A. = 
I 

v.e-EjlRT I 7 Wb) 

where Aj is the total rate of leaving state j 
and vj,Ej are the frequency factor and acti- 
vation energy in the Arrhenius activated 
form for that rate. 

I-D DIMER 

The diffusion coefficient, D, is related to 
the variance, 02(t) [o’(f) = (f’(t)), for an 
unbiased motion], in the position of the cen- 
troid, in the long-time (diffusion) limit via 

D = !ii~ 2, (B3) 

where E is the dimensionality of the 
random-walk lattice. Thus to calculate 
o”(t) we need to derive an expression for 
the second moment of the probability dis- 
tribution, P,(l,r). The probability P of 
being at (1,i) at time t (starting from the 
origin in internal statej at t = 0) is related 
to the probability propagator R of reaching 
(1,i) exactly at time t by 

Pi&t) = 1: R,(l,t - T) 

X [ 1 - J-i $j(T’)dr’] dTy (B4) 

where the factor in square brackets takes 
into account events in which the centroid 
arrived at (1,i) at an earlier time t - T and 
no further transition has occurred by time 
t. The variance, o’(t), is related to P as 
follows (12): 

where gj is the initial occupation proba- 
bility of statej. 

For a semi-Markovian (continuous time) 

---7----------- 

l I 

FIG. 1. One-dimensional two-state migration of a dimer. (a) The two nonequivalent states of the 
dimer which participate in the migration mechanism on the lattice are denoted by 1 (straight) and 2 
(staggered). The lattice spacing is denoted by L and the dimer centroid is marked by x. (b) A mapping 
of the two-state mechanism shown in (a) onto a random-walk lattice with two states in the unit cell. The 
total transition rates out of states 1 and 2 are denoted by A and B, respectively. The arrows show the 
direction of the transitions between the states. 
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random walk the probability propagator 
R is related to &(l,l’;r), the fundamental 
function characterizing the motion, via 
(12, 14) 

Since the above is in convolution form in 
both the spatial and temporal variables, 
Fourier (1 + k) and Laplace (t + u) trans- 
formations, respectively, allow us to solve 
Eq. (B6) for R . Expressing all quantities as 
matrices of dimensions N x N, where N is 
the number of internal states we obtain 
(12, 14) 

!Ww) = D - p(k) ~W-‘. (B7) - 
Substitution of Eq. (B7) in Eq. (B4) for P 
and subsequent use of Eq. (B5) allow the 
calculation of the diffusion constant by tak- 
ing the long-time limit of the resulting ex- 
pression. We emphasize that the quantities 
specifying the transition rates between the 
internal states (frequency factors vj and ac- 
tivation energies Ej) determine ‘P and thus 
the diffusion constant D (denoted by k in the 
main text, see Eqs. (l), (2), and (6)). 

For the special case of propagation via a 
two-internal-state mechanism in one di- 
mension specific to the motion of a dimer 
(see Fig. 1) (other cases of higher dimen- 
sionality and increased complexity have 
been discussed by us elsewhere (11-14)) 
the matrix y’ is given by (for nearest- 
neighbor transitions) 

YOJ) 

( 

0 tBe-yGl,o + ti,,J = 
IAe-“YGl,” + a,,-,,) 0 I7 

08) 

where L is the lattice spacing. Substituting 
Eq. (B8) in (B7) and following the subse- 
quent steps yield 

t?(t) = (l’(d) = A* (L’t/2). (B9) 

A similar analysis has been performed for 
other two-state diffusion mechanisms, such 

as mobile and immobile states (12-14). In 
all these cases the expressions for a’(t) are 
in terms of the transition rates between 
states of the diffusant, and the transition 
rate of diffusion, k, in the kinetic equation 
(Eq. 1) cannot be expressed as a simple 
single-exponential Arrhenius form. 

Turning to the case of diffusion on a het- 
erogeneous surface, i.e., a surface which 
contains two types of sites, with different 
rates of release out of these sites, two alter- 
native methods of calculation have been 
developed (14). The first is a defect- 
renormalization technique, in which the 
probability propagators are renormalized to 
include the effect of the nonhomogeneity of 
the surface. For lack of space we will not 
describe it further, and refer the reader to a 
recent publication (14). A second method is 
a generalization of the internal-state tech- 
nique described above and consists of con- 
structing superlattices with equivalent unit 
cells each containing an identical distribu- 
tion of sites A and B. Thus, for example, 
the mapping in Fig. 1 can be considered as 
representing diffusion on a lattice with al- 
ternating sites A and B. For sites B a dis- 
tance n lattice spacings apart, a unit cell 
with n - 1 sites of type A, and one of type B 
is used. The resulting expression for the dif- 
fusion constant is that given in Eq. (12). It is 
of interest to note that this expression is 
equivalent to that which is derived for a 
random distribution of the defects (sites B) 
in the average-t-matrix approximation, in 
which correlations between sites are ne- 
glected. 
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